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Chapter one: The Semiconductor in Equilibrium 

 

This chapter deals with the semiconductor in equilibrium: 

Equilibrium (Thermal equilibrium) 

  No external forces such as voltages, electric fields, magnetic fields, or 

temperature gradients are acting on the semiconductor 

  All properties of the semiconductor will be independent of time at 

equilibrium 

  Equilibrium is our starting point for developing the physics of the 

semiconductor. We will then be able to determine the characteristics that 

result when deviations from equilibrium occur 

 

1.1 CHARGE CARRIERS IN SEMICONDUCTORS 

 

Current is the rate at which charge flow 

 

  two types of carriers can contribute the current flow ( Electrons in conduction 

band and   Holes in valence band) 

  The density of electrons and holes is related to the density of state function 

and Fermi-Dirac distribution function 

This statement is written in equation form as 

𝑛(𝐸)𝑑𝐸 = 𝑔𝑐(𝐸)𝑓𝐹(𝐸)𝑑𝐸                           (1) 

n (E )dE  density of electrons in CB at energy levels between and   

𝑝(𝐸)𝑑𝐸 = 𝑔𝑣(𝐸)(1 − 𝑓𝐹(𝐸))𝑑𝐸                        (2) 
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P(E)dE = density of holes in VB at energy levels between and  

[The density of states (DOS) of a system describes the number of states that are available to be 

occupied by the system at each level of energy. 

Distribution functions are the probability density functions used to describe the probability with 

which a particular particle can occupy a particular energy level. When we speak of Fermi-Dirac 

distribution function, we are particularly interested in knowing the chance by which we can 

find a fermion in a particular energy state of an atom. Here, by fermions, we mean the electrons 

of an atom which are the particles with ½ spin, bound to Pauli Exclusion Principle.] 

 

To find the thermal-equilibrium electron and hole concentrations, we need to 

determine the position of the Fermi energy EF with respect to the bottom of the 

conduction-band energy Ec and the top of the valence-band energy Ev. To address 

this question, we will initially consider an intrinsic semiconductor. 

Intrinsic semiconductors are the pure semiconductors which have no impurities in 

them. As a result, they are characterized by an equal chance of finding a hole as that 

of an electron. This in turn implies that they have the Fermi-level exactly in between 

the conduction and the valence bands. 

DENSITY OF STATES FUNCTION 

Since current is due to the flow of charge, an important step 

in the process is to determine the number of electrons and holes in the semiconductor 

that will be available for conduction. The number of carriers that can contribute to 

the conduction process is a function of the number of available energy or quantum 

states since, by the Pauli Exclusion Principle, only one electron can occupy a given 

quantum state. When we discussed the splitting of energy levels into bands of 

allowed and forbidden energies, we indicated that the band of allowed energies was 

actually made up of discrete energy levels. We must determine the density of these 

https://www.electrical4u.com/concept-of-atom/
https://www.electrical4u.com/intrinsic-semiconductor/
https://www.electrical4u.com/theory-of-semiconductor/
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allowed energy states as a function of energy in order to calculate the electron and 

hole concentrations. 

To find the DOS, we need to know the energy of the particle in 3D box, which can 

be get it  from the solution of the Schrodinger’s equation, i.e. 

                                𝐸 =
ℏ2𝑘2

2𝑚
                                         (3) 

where n = 1, 2, 3, . . . and k = nπ/a, with a the length of the box. 

At this point, associated with each value of n is an energy.  

The volume Vk of a single quantum state is 

 

                                  𝑉𝑘 = (
𝜋

𝑎
)

3
                                          (4) 

We can now determine the density of quantum states in k space. A differential 

volume in k space is shown in Figure 3.26b and is given by 4k2dk, so the differential 

density of quantum states in k space can be written as 

 

                         𝑔(𝑘)𝑑𝑘 = 2 (
1

8
)

4𝜋𝑘2𝑑𝑘

(
𝜋

𝑎
)

2                                               (5) 

The first factor, 2, takes into account the two spin states allowed for each quantum 

state; the next factor, 1/8, takes into account that we are considering only the 

quantum states for positive values of kx, ky, and kz. The factor 4k2dk is again the 

differential volume and the factor (π/a)3 is the volume of one quantum state. 

Equation (5) may be simplified to  

                                   𝑔(𝑘)𝑑𝑘 =
𝜋𝑘2𝑑𝑘

𝜋3
𝑎3                                            (6) 

 

Equation (6) gives the density of quantum states as a function of momentum, 

through the parameter k.  



4 
 

 

Figure1 (a) A two-dimensional array of allowed quantum states ink space. (b) The positive one-

eighth of the spherical k space. 

 

We can now determine the density of quantum states as a 

function of energy E. For a free electron, the parameters E and k are related by using 

(3), 

                          𝑘 =
1

ℏ
√2𝑚𝐸                                             (7) 

And  

                                  𝑑𝑘 =
1  

ℏ
√

𝑚

2𝐸
𝑑𝐸                                   (8) 

Then,; substituting the expressions for k2 and dk into Equation (6), the number of 

energy states between E and E  dE is given by 

 

                        𝑔(𝑘)𝑑𝐸 =
𝜋𝑎3

𝜋3 (
2𝑚𝐸

ℏ2 ) .
1

ℏ
√

𝑚

2𝐸
𝑑𝐸                                            (9) 

Or  

                             𝑔(𝐸)𝑑𝐸 =
4𝜋3

ℎ3
. (2𝑚)3/2√𝐸dE                                          (10) 
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Equation (10) gives the total number of quantum states between the energy E and 

E  dE in the crystal space volume of a3. If we divide by the volume a3, then we will 

obtain the density of quantum states per unit volume of the crystal. Equation (10) 

then becomes 

                                       𝑔(𝐸) =
4𝜋(2𝑚)3/2

ℎ3 √𝐸                                       (11) 

 

Example: Calculate the density of states per unit volume over a particular energy 

range. 

Hint, consider the density of states for a free electron given by Equation (11). Calculate the 

density of states per unit volume with energies between 0 and 1 eV. 

 

Ans. The volume density of quantum states, from Equation (10), is 

𝑁 = ∫ 𝑔(𝐸)
1

0

𝑑𝐸 =
4𝜋(2𝑚)3/2

ℎ3
∫ √𝐸 𝑑𝐸

1

0

 

Then   𝑁 =
4𝜋(2𝑚)3/2

ℎ3  
2

3
𝐸3/2,        The density of states is now  

  𝑁 =
4𝜋(9.11𝑥10−31)3/2

(6.625𝑥10−34)3
.

2

3
(1.6𝑥10−19)3/2 = 4.5𝑥1027𝑚−3. 

Or         N=4.5x1021 states/cm3 

Comment 

The density of quantum states is typically a large number. An effective density of 

states in a semiconductor, as we will see in the following sections and in the next . 

 

H.W: For a free electron, calculate the density of quantum states (#/cm3) 

over the energy range of (a) 0 ≤ E ≤ 2.0 eV and (b) 1 ≤ E ≤ 2 eV. 

 

 


